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Abstract

A modal parameter identification method of impulse response function, based on a modulated Gaussian
wavelet transform, is presented. The factors influencing the identification accuracy and the required
conditions of using this parameter identification method are discussed. Numerical verification of the
proposed method is presented for several two-degree-of-freedom examples. A wind tunnel flutter
experiment on a wing model of missiles is introduced. The data set from the flutter test is analyzed by using
the proposed wavelet transform method. The first two order modal parameters of the wing model are
identified, and then the critical dynamic stress is predicted by using the flutter stability parameter method.
Finally, the results are compared with the results of FFT analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The flutter analysis of missles is mainly concerned with the flutter of wings for the antiaircraft
missiles. Because the stiffness of control systems of wings is relatively small, the first two order
modes of wings are mainly warping and torsion, and their coupling may cause flutter easily.
Moreover, there are many factors that would influence the flutter, and many hypotheses are
required for the analysis, and thus the reliability of conclusion is limited. Therefore, it is important
to verify the conclusion through experiments. At present, the experimental method on the design
of missiles is mainly the wind tunnel flutter experiment. The flutter critical point is predicted
through modal parameter identification based on the modal structure under the sub-critical state.
The common way is to get the freedom decrement signal or impulse response of the structure
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through the random decrement technique, and then get modal parameters through the regular
methods, such as the least-squares iteration method, ITD method and the complex exponential
method [1]. However, these methods are sensitive to the noise. In recent years, many scientists
[2–5] presented the theory of using the wavelet transform method for identifying the modal
parameters of a structural system. Staszewski and Cooper [2] have used this method in an analysis
of the flutter experimental data of planes. Lamarque et al. [5] have used this method in an analysis
of the vibration experimental data of bridges. However, this method has yet not been used in
analysis of the wind tunnel flutter experimental data of wings.
In this paper, the modal parameter identification method based on the modulated Gaussian

wavelet is introduced and analyzed. And then the flutter experiment on the wing of the antiaircraft
missile is also introduced. The wavelet transform method based on the modulated Gaussian
wavelet and the frequent response analysis are used in identifying the experimental data,
respectively. According to the modal parameters that are identified, the critical dynamic pressure
is determined. Finally, the results of these two methods are compared.

2. The general Morlet wavelet

The general form of Morlet wavelet is [1]

gðtÞ ¼ p�1=4ðeio0t � e�o2
0
=2Þe�t2=2: ð1Þ

In this paper, the generalized Morlet wavelet can be written as

gðtÞ ¼ cðeio0t � e�o2
0
s2=2Þe�t2=ð2s2Þ; ð2Þ

where c is a non-zero constant, o0 is the modulated frequency, s is the Gauss parameter. gðtÞ is
also called as Morlet wavelet with an adjustable parameter. Its Fourier transform can be written
as

#gðoÞ ¼ cs
ffiffiffiffiffiffi
2p

p
½e�s2ðo�o0Þ

2=2 � e�s2ðo2þo2
0
Þ=2�: ð3Þ

It is a non-orthogonal, redundant wavelet. Usually, we need so0 > 5 so that we can improve the
accuracy of the analysis by reducing the redundancy. It can be easily verified that this wavelet has
some characteristics as follows: Z þN

�N

gðtÞ dt ¼ #gð0Þ ¼ 0; ð4Þ

Z þN

�N

jgðtÞj2dt ¼
s

ffiffiffi
p

p
c2

ð1þ e�o2
0
s2 � 2e�3o2

0
s2=4ÞoþN; ð5Þ

Z þN

�N

tjgðtÞj2 dt ¼ 0: ð6Þ

Usually, we employ c ¼ 1; and we often ignore the second term in the bracket of Eqs. (1) and
(2) because they are much less than the first term when so0 > 5: Thus, its wavelet base function
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and Fourier transform are given by

ga;bðtÞ ¼ g t�b
a

� �
¼ eio0t�b=ae�ðt�b=aÞ2=ð2s2Þ; ð7Þ

#ga;bðoÞ ¼
ffiffiffi
a

p
#gðaoÞe�iob ¼ s

ffiffiffiffiffiffiffiffi
2ap

p
e�s2ðao�o0Þ2=2e�iob; ð8Þ

where a is the frequency scale parameter and b is the time location parameter. Its time–frequency
window is

½b � a Dg
ffiffiffi
s

p
; b þ a Dg

ffiffiffi
s

p
� 	

o0

a
�

D #g

a
ffiffiffi
s

p ;
o0

a
þ

D #g

a
ffiffiffi
s

p
" #

; ð9Þ

where Dg; D #g are the radii of time and frequency window of the modulated frequency Gauss
mother wavelet, respectively. It can be seen that this wavelet base function can automatically
adjust the time–frequency resolution with changing frequency parameters. Once the center of the
frequency window is fixed, the width of the window, as well as the time–frequency resolution of
this wavelet, can be adjusted by choosing the Gauss parameter. When s ¼ 1; the studied wavelet
becomes the Morlet wavelet, and it also has good band-pass characters. As presented in Ref. [2],
when the wavelet transform method is used to identify the modal parameters of a structural
system, its accuracy is closely related to the time–frequency resolution of the wavelet. For this
reason, in this paper we use the Morlet wavelet with an adjustable parameter.

3. Identification of a modal parameter

3.1. System of single degree of freedom (s.d.o.f.)

The impulse response function of a structural system contains its natural characters. An
impulse response function of an s.d.o.f. system can be written as

hðtÞ ¼ Ae�xont sinðodt þ f0Þ: ð10Þ

Its wavelet transform is

WThða; bÞ ¼/h; ga;bS ¼
1

2p
/ #h; #ga;bS ¼

1

2p

Z þN

�N

#hðoÞ #g

a;bðoÞ do

¼

ffiffiffi
a

p
2p

Z þN

�N

#hðoÞ #gðaoÞeiob do

¼A

ffiffiffi
a

p
2p

Z þN

�N

1
o2

n�o2þ2xonoi
#gðaoÞeiðobþf0Þ do: ð11Þ

In Eq. (11), we define that z ¼ io and then use the residue theorem

WThða; bÞ ¼A

ffiffiffi
a

p
2i

e�xonbþf0ð #gðaxoniþ aodÞeiðod bþf0Þ

� #gðaxoni� aodÞe�iðod b�f0ÞÞ

¼ ðA1e
ðod bþf1Þi � A2e

ð�od bþf2ÞiÞe�xonbþf0 ; ð12Þ
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where

A1 ¼ As
ffiffiffiffiffiffiffiffiffiffi
ap=2

p
e�s2ðaod�o0Þ

2=2þðsaxonÞ
2=2;

A2 ¼ As
ffiffiffiffiffiffiffiffiffiffi
ap=2

p
e�s2ðaodþo0Þ

2=2þðsaxonÞ
2=2;

ð13Þ

f1 ¼ �axons2ðaod � o0Þ � p=2;

f2 ¼ axons2ðaod þ o0Þ � p=2:

A2 can also be written as

A2 ¼ As
ffiffiffiffiffiffiffiffiffiffi
ap=2

p
e�s2½ðaon

ffiffiffiffiffiffiffiffiffiffi
1�2x2

p
þo0Þ

2þ2ao0onð
ffiffiffiffiffiffiffiffi
1�x2

p
�

ffiffiffiffiffiffiffiffiffiffi
1�2x2

p
Þ�=2: ð14Þ

From Eq. (14), we can see that, because
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
> 0; A2 is almost equal to zero

and hence can be neglected. Thus, we can derive from Eq. (12) that

jWThða; bÞj ¼ A1e
�xonbþf0 ; ð15Þ

+WThða; bÞ ¼ odb þ f1: ð16Þ

A logarithm of the module and the phase of the wavelet transform become linear functions of
the time parameter b. They are shown as two lines with the scale of a half logarithm. We can get
the modal frequency and modal damping from the slopes of these two lines. For a s.d.o.f.
problem, this method has a high accuracy of identification.

3.2. System of m.d.o.f.

The impulse response in one point can be expressed as the superposition of the N most relevant
modes of the structure:

hðtÞ ¼
XN

j¼1

hjðtÞ ¼
XN

j¼1

Aje
�xjonj t sinðodjt þ f0jÞ; ð17Þ

where Aj is the residue magnitude, xj is the modal damping ratio, onj is the undamped angular
frequency, odj is the damped angular frequency and f0j is the initial phase of the jth mode. From
Eqs. (12)–(14), we can define a linear transformation as WT : The WT of hðtÞ in Eq. (17) is

WThða; bÞ ¼
XN

j¼1

WThj
ða; bÞ

D
XN

j¼1

Aj

ffiffiffi
a

p
e�s2ðaodj�o0Þ

2þðsaxjonjÞ
2=2e�xjonjbþf0jeðodjbþfjÞi

¼
XN

j¼1

Aj

ffiffiffi
a

p
lje

�xjonjbþf0jeðodjbþfjÞi: ð18Þ
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If the center of frequency window of the wavelet base is approximately equal to one of the N

modal frequencies, and the corresponding mode gives the main contribution to the sum of the
terms in Eq. (18), the modal filter can be realized. For this purpose, we study the coefficients of the
Eq. (18). At first, lj is given by

lj ¼ e�s2ðaodj�o0Þ
2þðsaxjonjÞ

2=2

¼ e
�ðs2=2Þ aonj

ffiffiffiffiffiffiffiffiffiffi
1�2x2j

p
�o0

ffiffiffiffiffiffiffiffi
1�x2j

p
=

ffiffiffiffiffiffiffiffiffiffi
1�2x2j

p� �2

þðs2=2Þo2
0
x2j =ð1�2x2j Þ: ð19Þ

lj will get to its maximum when

a ¼ aj ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2j

q
=ðonjð1� 2x2j ÞÞ

¼
o0

onj

1þ
3

2
x2j þ

23

8
x4j þ L


 �
D

o0

onj

; ð20Þ

and at this time o0=a (center of frequency window of the wavelet base) is approximately equal to
the jth modal frequency onj : If Aj of the corresponding mode is at the same level as the other
modes, we can say that this mode gives the main contribution to the sum in Eq. (18). Eq. (18) can
be rewritten as

WThðaj; bÞDAjlj

ffiffiffiffi
aj

p
e�xjonjbþf0jeðodjbþfjÞi: ð21Þ

Thus, this multi-degree-of-freedom system is decoupled; then we can identify the modal
parameters through Eqs. (15) and (16).

4. Analysis of the method

From the last section, we can see that the generalized Morlet wavelet’s capability of decoupling
is closely related to the character of its band-pass filter. And the identificational errors are mainly
coming from the mode which the wavelet cannot completely filter. To discuss this problem, we
consider the most adjacent two modes of the m.d.o.f. as a two-degree-of-freedom system, for
example, the jth and (j+1)th modes. Thus, Eq. (18) is rewritten as

WThðaj; bÞDAjlj

ffiffiffiffi
aj

p
e�xjonjbþf0jeðodjbþfjÞi

þ Ajþ1ljþ1

ffiffiffiffi
aj

p
e�xjþ1onjþ1bþf0jþ1eðodjþ1bþfjþ1Þi: ð22Þ

Obviously, if AjbAjþ1; it is easy to filter the lower mode, but it is probabaly difficult to filter the
higher one and vice versa. Thus, we consider this problem on the basis that Aj and Ajþ1 are at the
same level. To make the analysis convenient, we let j=1 and j+1=2, and define the influence
factor as

gj ¼ �s2ðajodj � o0Þ
2=2þ s2ðajxjonjÞ

2=2; j ¼ 1; 2: ð23Þ

In practice, we can use the finite element method or other methods of modal parameter
identification to get the natural frequency of the system accurately. So we usually make

a ¼ aj ¼ o0=onj; j ¼ 1; 2: ð24Þ
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When a ¼ a1 ¼ o0=on1; there are

g1 ¼ �s2o2
0 1� x21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
 �
;

g2 ¼ �s2o2
0

o2
n2

o2
n1

ð1� 2x21Þ � 2
on2

on1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
þ 1

� 
=2: ð25Þ

Usually, it is the influence factor of the higher mode that affects the accuracy of low modal
identification. It is easy to verify that g1 > 0: If at the same time g2 > 0; we would think that it is
impossible that ljbljþ1: In other words, it is difficult for the wavelet to achieve the modal filter.
Otherwise, the possibility of realization of the modal filter will greatly increase. For this reason,
we can use g2o0 as a necessary condition for filtering the low mode. For this goal, there must be

o2
n2

o2
n1

ð1� 2x21Þ � 2
on2

on1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
þ 1 > 0 ð26Þ

or

on2

on1
>

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
þ x1

1� 2x21
: ð27Þ

Likewise, when a ¼ a2 ¼ o0=on2; usually it is the influence factor of the lower mode that affects
the accuracy of the high modal identification. In this case, there are

g1 ¼ �s2o2
0

o2
n1

o2
n2

ð1� 2x22Þ � 2
on1

on2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22

q
þ 1

� 
=2;

g2 ¼ �s2o2
0 1� x22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22

q
 �
: ð28Þ

Obviously, g2 > 0; and in this case the required condition for the wavelet transform method to
filter the high mode is g1o0: There must also be that

o2
n1

o2
n2

ð1� 2x22Þ � 2
on1

on2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22

q
þ 1 > 0 ð29Þ

or

on1

on2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22

q
� x22

1� 2x22
: ð30Þ

We can conclude that

(i) When the frequency parameter is approximately equal to the modal frequency to be
identified, the necessary conditions for the wavelet transform method to filter the adjacent
two modes simultaneously are given by Eqs. (27) and (30). We can rewrite them as

on2

on1
> max

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
þ x1

1� 2x21
;

1� 2x22ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22

q
� x22

8><
>:

9>=
>;: ð31Þ

ARTICLE IN PRESS

K. Yu et al. / Journal of Sound and Vibration 269 (2004) 899–912904



For example, we consider a structural system that the damping of its materials is supposed to
be a small proportional damping. This means that its value is in the range [0.001 0.1]. If the
ratio of the two modal frequencies to be identified is less than 1.12 (the corresponding two
modal damping ratios are 0.1), the Morlet wavelet transform method should not be used. If
the ratio is more than 1.12, however, we can use this method. The identification accuracy for
the cases of large damping is lower than that for the cases of small damping. In other words,
from Eq. (31), we know that this method is applicable except for the cases of large damping
and close modal frequencies.

(ii) Usually, o0 is more than 5, and in most earlier papers which use the Morlet wavelet
transform method, the authors make o0 ¼ 2p: However, according to the studies
in this paper, if the condition of Eq. (31) is satisfied, we can conclude that the identific-
ation accuracy can be largely improved by increasing the value of o0 based on Eqs. (25)
and (28). From Eqs. (9) and (24), we can see that the value of frequency parameter a

increases with o0: Thus, the frequency window becomes more narrow, and the time
window becomes wider. These make the frequency resolution to increase, and
thus the accuracy to improve. Nevertheless, the improvement of accuracy is restricted
by the uncertainty principle. If the resolution of time is too low, the total accuracy
of the wavelet transform would be impaired, even the transformation itself would be
senseless.

(iii) After o0 is defined, the center of frequency window of the wavelet is definite. The generalized
Morlet wavelet transform method in this paper can be improved by adjusting the Gauss
parameter s: However, because it only adjusts the width of the window, the change of the
value of s should be restricted.

(iv) The purpose of adjusting the values of o0 and s is to make the difference between the
identified value of natural frequency and the known one as little as possible. So the identified
value is equal to the damping ratio.

5. Numerical example

To verify the conclusions of this paper, and to analyze the numerical character of the wavelet
transform method for modal parameter identification, in this section we consider the following
two examples. In the first one, the difference between the adjacent modal frequencies is rather
great, but in the other one, it is small. The influence of different damping and Gauss parameter s
is included in the study of the first example. And when we study the second one, the influence of
the two approximately equivalent modal frequencies and the modulated frequency parameter o0

is included. In the process of simulation, we add Gaussian white noise to the impulse response
function of the system. We also define the signal-to-noise ratio as the specific value of the standard
difference of the original signal (y0) to the standard difference of the data that include the noise
signal (y):

SNR ¼
stdðy0Þ

stdðy � y0Þ
: ð32Þ
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The error of identification is

error ¼
value from theory � estimated

value from theory

����
����:

Example 1. The theoretical values of the two modal frequencies are f1 ¼ 10 Hz; f2 ¼ 30Hz: With
the condition o0 ¼ 2p; we consider two sets of damping values. One is the case of low damping
ratio in which x1 ¼ 0:08; x2 ¼ 0:04; and the other is the case of high damping ratio in which
x1 ¼ 0:4; x2 ¼ 0:1: SNR of the data is 100. In the case of the high damping ratio, We make s ¼ 1
and 1.1, respectively, to study the influence of s: The results of identification and the error are
shown in Table 1. It is shown that the identification accuracy for the problem of large damping is
acceptable, even though it is relatively low. And it can be improved by adjusting the Gauss
parameter.

Example 2. The theoretical values of the two modal damping ratio are x1 ¼ 0:055 and x2 ¼ 0:02:
The first modal frequency is 25, 27, 29Hz. And the second modal frequency is f2 ¼ 30 Hz: The
results of identification are shown in Table 2, Figs. 1 and 2, with the condition of s ¼ 1 and
o0 ¼ 2p; 4p; respectively.
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Table 1

Natural frequencies and damping ratio estimation results from Example 1

Example 1 Estimated frequency (Hz) Error ( ) Estimated damping ratio Error ( )

Low damping ratio with s ¼ 1 9.98136 1.86411 0.07959 0.50777

30.16679 0.55597 0.04178 4.47321

High damping ratio with s ¼ 1 10.31912 3.19124 0.32445 18.85641

27.57614 8.07952 0.08938 10.61993

s ¼ 1:1 10.20106 2.01062 0.37167 7.08251

28.94067 3.53117 0.09179 8.21364

Table 2

Natural frequencies and damping ratio estimation results of Example 2

Example 2 Frequency (Hz) SNR Estimated frequency (Hz) Error ( ) Estimated damping ratio Error ( )

o0 ¼ 2p 25 100 24.98126 0.07496 0.05693 3.50909

20 25.13172 0.52688 0.05421 4.47321

5 25.51015 2.04062 0.05176 5.89091

30 100 30.03817 0.12723 0.02004 0.20913

20 30.04681 0.15603 0.01939 3.05215

5 30.07074 0.23581 0.01916 4.21354

o0 ¼ 6p 27 100 27.09737 0.36063 0.05736 4.29091

20 27.12223 0.45271 0.05816 5.74509

30 100 29.91433 0.28557 0.01802 9.90000

20 29.88824 0.37253 0.01610 19.47327

o0 ¼ 14p 29 100 27.96961 6.76834 0.02688 51.1158

30 100 29.35183 2.16057 0.02547 27.37165

K. Yu et al. / Journal of Sound and Vibration 269 (2004) 899–912906



Figs. 1 and 2 are a semi-logarithmic plot of the module of the wavelet transform of impulse
response function, where the first modal frequency is 25, and SNR=20.
It can be seen that in Fig. 1, the middle part of the curves cannot be regressed to appropriate

lines. So it is difficult to get the slope of the lines. Thus, the results of identification are not given
for this case.
On the contrary, the curves in Fig. 2 can be easily identified. The results of identification are

shown in Table 2. All of the o0 used in this example can help to get a comparatively high accuracy
of identification. It is illustrated that the selection of o0 has great influence on the accuracy. In this
example, we use 27 and 29Hz as the first modal frequency. It can be seen that the accuracy of the
wavelet transform method is impaired with the approaching of the two adjacent modal

ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

Time (s)

lo
g 

A
m

pl
itu

de
 (

un
ite

)

(a) 

(b) 

Fig. 1. Semi-logarithmic plot of the module of the wavelet transform of impulse response function (o0 ¼ 2p;
SNR=20): (a) first mode, 25Hz and (b) second mode, 30Hz.
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Fig. 2. Semi-logarithmic plot of the module of the wavelet transform of impulse response function (o0 ¼ 4p;
SNR=20): (a) first mode, 25Hz; (b) second mode, 30Hz.
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frequencies. For this example, when the two frequencies are 27 and 30Hz, respectively, the results
of identification are acceptable. It shows that this method can be used for identifying the problem
in which the difference between two adjacent modes is little. But when the two frequency are 29
and 30Hz, the results are unacceptable. At this time, the ratio of the high modal frequency to the
low one is not satisfied with Eq. (31). So the wavelet transform method is not applicable according
to the conclusion of the forth section.
Also in Table 2 we did not list the results in the cases of SNR=5 and 5, 20 when o0 ¼ 6p and

o0 ¼ 14p; respectively. The reason is under such cases, there are such big errors in the results that
it is nonsensical to list such results.

6. The wind tunnel flutter experiment on wing model of missile

In the wind tunnel experiment, because of the limitation of band of the airflow noise, the
structural response is too faint to be analyzed. For this reason, we install an exciter on
the experimental structure and give a random excitation to the wing surface to increase the
bandwidth. The excitation location is shown in Fig. 3. The random excitation comprises the
magnetic exciter and power amplifier. The white-noise signal is generated by the dynamic signal
analyzer.
The measuring system can be seen in Fig. 4. In this paper, the signal to be analyzed is sampled

by BK4343 transducer.
We gradually increase the wind tunnel dynamic pressure from the low dynamic pressure under

which the flutter is impossible to the point at which the flutter happens. One set of the original
experimental data can be seen in Table 3.
The sampling frequency is 500Hz, and the length of the record is about 25 s.

7. The disposal and analysis of the experimental data

At first, we analyze the power spectrum density (PSD) of the experimental data (see Fig. 5a).
From Fig. 5a we can see that there is a relatively large disturbance at the low frequency. Here

the data are obtained from the second data set in Table 3 and in next figures. Before the analysis,
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Fig. 4. Measuring system.

Table 3

Original experimental data

Order number Angle of wing model Modal frequency of the ground (Hz) Parameter of the wind tunnel

First order Second order Mach

number

Airflow dynamic

pressure (kPa)

1 2�420 26.5 47.0 1.53 63.92

2 66.91

3 71.27

4 97.9

5 96.23
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Fig. 5. Frequency response plot of the experimental data: (a) estimated from the original data and (b) obtained by

random decrement technique.
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we filter the signal at 15–200Hz, and then obtain the impulse response function of the system
through random decrement technique [1], in which the width of data is 1000 points. The
amplitude of the impulse response function is shown in Fig. 5b. We can see that it is difficult to
read the plot directly because of the time limitation of the blow and burr of the plot. Therefore, it
is necessary to identify the data through modal parameter identification methods.
The wavelet transform method is a simple and effective method and can be used for identifying

the problem in which the difference between two adjacent modes is small. The other advantage of
this method is that it can filter out the noise and thus it is not sensitive to the noise [5]. For these
reasons, we use this method to analyze the experimental data.
We determine the frequency parameter of the discrete wavelet transform as a ¼ f0=f; where

f0 ¼ o0=ð2pÞ is the modulated frequency, and f is the frequency range vector of the structural
system which is to be analyzed and is determined as f ¼½20 : 0:2 : 80�: The wavelet transform of
the experimental data has been made (see Fig. 6). We can determine the first two order natural
frequency (see the center of the bright part of the plot), which are corresponding with the 60th and
198th point of the discrete frequency parameter. Based on the natural frequency, we choose
frequency parameter a1; a2 and identify the first two modal frequencies and damping ratio from
Eqs. (6)–(9). The identifying results of the data in Table 3 are shown in Table 4. For making the
problem clear, the phase of the wavelet transform of the second data set of Table 3 is shown in

ARTICLE IN PRESS

Fig. 6. Three-dimensional time–frequency plot of the wavelet transform of the experimental data (a) and its

projection (b).

Table 4

Results of modal parameter identification and estimation of flutter critical dynamic pressure

Order

number

Modal parameters through Fourier

analysis

Modal parameters through wavelet

analysis

Critical dynamic

pressure predicted

First

order

frequency

(f1) (Hz)

Second

order

frequency

(f2) (Hz)

First

order

damping

ratio (x1)

Second

order

damping

ratio (x2)

First

order

frequency

(f1) (Hz)

Second

order

frequency

(f2) (Hz)

First

order

damping

ratio (x1)

Second

order

damping

ratio (x2)

Fourier

analysis

(kPa)

Wavelet

analysis

(kPa)

1 20.5 58.6 0.085 0.029 29.4 60.4 0.027 0.018 101.3 105.1

2 30.0 59.25 0.071 0.0126 32.3 59.1 0.057 0.0188

3 29.5 59.5 0.085 0.0126 33.1 59.0 0.07 0.036

4 31.75 56.25 0.091 0.0088 32.1 57.8 0.082 0.0296

5 32.0 57.0 0.090 0.0066 32.2 56.56 0.074 0.0248
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Fig. 7. The slopes of the lines in Figs. 7a and b are correspond with o1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
and o2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
;

respectively. In Fig. 7, the real lines correspond with the results of identification and the dashed
lines with the results of fitting.
Because the flutter of the missiles’ wings is mainly coupled by warping and torsion of the first

two modes, it is reasonable to use the flutter stability parameters method to predict the critical
dynamic pressure. With this method, we can determine the flutter stability parameters by using the
identifying results under the sub-critical state and the flutter characteristic equation of the two-
degree-of-freedom system. The flutter stability parameters are as follows:

F ¼ ðA2 � A1=A3ÞA1 � A0A3 > 0; ð33Þ

where Aj ðj ¼ 0; 1; 2; 3Þ are the parameters of the flutter characteristic equation of the two-degree-
of-freedom system. F will vary with the experimental dynamic pressure of the wind tunnel. Its
value reflects the extent of the stability of flutter. In the sub-critical state, the value of F is positive
and decreases with the increase of dynamic pressure. Thus we can deduce the flutter critical
dynamic pressure qcr when F ¼ 0: Usually, we use the following two order polynomial to fit the
data:

B0 þ qiB1 þ q2i B2 ¼ Fi; i ¼ 1; 2;y; n; ð34Þ

where Bj (j ¼ 0; 1; 2) are the fitting parameters of the polynomial. qi are the dynamic pressure of
various sub-critical states. Fi are the corresponding flutter stability parameters. After getting the
fitting parameters by using the least-squares fitting method, the critical dynamic pressure when
F ¼ 0 can be predicted. Moreover, the modal parameters can be obtained through frequency
response analysis that is done by a CF-920 FFT analyzer. The results are all shown in Table 4.
From Table 4, we can see that the difference between the values of the critical dynamic pressure

predicted by Fourier analysis and wavelet analysis is small. The results of conventional Fourier
analysis are smaller than those obtained by the wavelet method. So designing the structure of
wings by using the critical dynamic pressure predicted by the Fourier analysis is somewhat
conservative. However, they do not include the noise of wind tunnel, and there are many burrs in
the real and imaginary part of the plot of the frequency response (see Fig. 8). Therefore, it would
be difficult to analyze from these results and the error of identification would be great. On the
contrary, although the wavelet transform method cannot eliminate the influence of noise, it is not
sensitive to the noise. In general, the results of the wavelet transform method are calculated
directly, not artificially found, so they would be more reliable.
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Fig. 7. Phase of the wavelet transform of the second data set of Table 3.
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Also in Table 4, we noted that there are many differences in the damping ratio between the two
analyses. Usually, for a simple case, the difference should not be so large. But for a complex case
like this, the question is different. In this case, the result got by FFT method may be influenced by
two factors: the uncertainty of the inputted data caused by the noise in the wind tunnel and the
error caused by artificially reading the data from Fig. 8. So we just used the FFT method as a
reference.

8. Conclusions

The modal parameter identification method can make use of the modulated Gaussian wavelet
transform based on the impulse response function. The Gaussian parameter can be used for
modulating the accuracy of identification. This method is simple and effective. For the wind
tunnel experiment of the wing model of missiles, when the dynamic pressure is increased gradually
and the random decrease technique is used, the wavelet transform method is feasible, and more
reliable and accurate results can be obtained.
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Fig. 8. Imaginary part of the frequency response function given by FFT analyzer.
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